Energy Consumption of ICT Networks

Bart Lannoo (iMinds)
Outline

Part I

Estimation of worldwide energy consumption of ICT networks

- Providing some important building blocks to create the big picture

Part II

- Collecting data about energy consumption
 → Resulting in launch of PowerLib
- Assessing energy-saving potential
 → Resulting in input towards the big picture

Part III

Evaluating (cost) incentives for implementing energy-saving approaches
Electricity consumption worldwide

2000-2011: 3.4% annual growth rate

19,700 TWh

What about ICT?

Data: based on http://yearbook.enerdata.net
Motivation

- Assess **whether** ICT occupies a major share in human electricity consumption
 - Current situation (2012)
 - Trends in recent past (2007-2012)
 - Insight in the evolution in the near future

- Assess **where** efforts should be concentrated in order to reduce the worldwide ICT electricity consumption
Electricity consumption in ICT: scope

- **Communication networks**
 - Customer Premises Equipment
 - Office networks
 - Telecom operator networks

- **Computers**
 - Desktop / laptops
 - Monitors

- **Data Centres** (= servers)
Footprint of communication networks

Worldwide electricity consumption (TWh/y)

CAGR: 10.4% 330 TWh

200 TWh

2007 2012

52 TWh
22 TWh
260 TWh

Lambert et al., “Worldwide electricity consumption of communication networks”, Optics Express ECOC 2012 Special Issue
Footprint of computers

Worldwide electricity consumption (TWh/year)

- Desktops
- Laptops
- CRTs
- LCDs

CAGR: 5.1%

2006: 240 TWh
2012: 310 TWh
Footprint of data centres

CAGR: 4.3%

220 TWh

270 TWh

High-end servers

Mid-range servers

Volume servers

Notes:
• includes estim. orphaned servers (2007 and 2012)
• Overhead accounts for 61% of total
The CAGR value is the compounded annual growth rate over the 2007 to 2012 time frame.

- **Total worldwide electricity use**
 - CAGR 2.9%

- **Networks**
 - CAGR 10.4%

- **PCs**
 - CAGR 5.1%

- **Data centers**
 - CAGR 4.4%
Joint footprint

Electricity consumption in ICT (TWh/year)

- Data centres
- Computers
- Comm. netw.

CAGR: 7%
Joint footprint - % of electr. consumption

![Joint footprint graph](image)

- Electricity consumption in ICT (TWh/year)
- Percentage of total worldwide electricity consumption

- 2007: 3.9%
- 2008: 3.9%
- 2009: 4.1%
- 2010: 4.5%
- 2011: 4.6%
- 2012: 5.3%

TREND Final Workshop
Brussels, October 24, 2013
Future trends?

ICT worldwide electricity use (TWh)

2007 study

Current study

Future?

Future trends – CAGR?

- Higher CAGR (e.g. 10%)?
 - Temporary effect of crisis disappears
 - Cloud computing
 - Low hanging fruit solutions already accomplished
 - Smart homes (IoT)

- Lower CAGR (e.g. 4%)?
 - CAGR gradually going down during last decades
 - Further intensification of measures and research
 - Shift to smaller/mobile devices

Will the CAGR after 2012 be higher or lower than in the timeframe 2007-2012?
Future trends – Emerging economies

USA (pop: 300 M)

Belgium (pop: 11 M)

China (pop: 1 300 M)

India (pop: 1 200 M)

China at same level:
+ 500 M people using the Internet

India:
+ 800 M people using the Internet

⇒ A whole lot of (potential) extra traffic!!
Research directions: general approach

General approach remains:

More power proportional (components and systems)

More energy efficient

Power

Idle Max. load Idle Max. load Idle Max. load
Conclusions

- Joint CAGR: **7%** (doubling per decade)
- Vs. global electricity consumption: **5% share** and growing
- But: **lower CAGRs than before 2007.**
 → Some (unintentional?) energy-efficiency effects seem to have an impact (e.g. data centers, PCs)
- All three considered categories – communication networks, computers and data centers – represent an **equal share** in the total electricity consumption
- 5-yearly updates needed to see where we are headed, and evaluate efforts
Outline

- Estimation of worldwide energy consumption of ICT networks
- Providing some important building blocks to create the big picture
 - Collecting data about energy consumption ➔ Resulting in launch of PowerLib
 - Assessing energy-saving potential ➔ Resulting in input towards the big picture
- Evaluating (cost) incentives for implementing energy-saving approaches
Outline

- Estimation of worldwide energy consumption of ICT networks
- Providing some important building blocks to create the big picture
 - Collecting data about energy consumption
 - Resulting in launch of PowerLib
 - Assessing energy-saving potential
 - Resulting in input towards the big picture

Part III

Evaluating (cost) incentives for implementing energy-saving approaches
Incentives for energy-efficient networks

- General and practical guidelines to improve energy-efficiency and carbon footprint in networks.
- Identification of major societal and economic challenges
- Provide **economic incentives** to induce energy-aware behaviours of:
 - Users
 - Equipment manufacturers
 - Operators
Two use cases considered

- Use case 1: Fiber to the Home with home router virtualization as EE solution

- Use case 2: Wireless access with network sharing as EE solution
Motivation
Use case 1: wired access – FTTH

- Initial observation
 - A lot of energy consumption goes to the CPE
 - This is paid for by the consumer, but the CPE choice is mainly influenced by the operator
 - The operator has no initial incentive to reduce this consumption

- Goal
 - Internalize the energy consumption for CPE into the objective function of the operator
Options to reduce energy
Use case 1: wired access – FTTH

Possible schemes for energy reduction at CPE:
- Sleep mode operation
- Proportionality to network load
- Home router virtualization
- Open access – shared infrastructure

Two categories of EE techniques at CPE side
- (+) Options leading to lower costs for the operator
 → in real interest of the operator [first focus]
- (-) Options leading to higher costs for the operator
 → can be enforced by regulation / taxes
Methodology

Use case 1: wired access – FTTH

- Scenario for quantifying home router virtualization
 - GPON technology, 1 operator
 - Time frame of 10 years
 - Routed home gateway vs. bridged home gateway (+virtual router at operator side)

- Total Cost of Ownership (TCO) model, including:
 - Equipment cost of home gateway
 - Operational gains to verify the incentives for introducing home router virtualization
 - Maintenance (reducing number of failures, affecting operator’s OpEx)
 - Energy consumption (mainly affecting customer side)
Results
Use case 1: wired access – FTTH

20% reduction
(ca. 22k users connected in Y10)
Motivation
Use case 2: wireless access

- Initial observation
 - A lot of energy goes to base station
 - The operator is directly interested to reduce the consumed energy at the BS
 - The vendor should develop hardware that supports the reduced energy consumption
Options to reduce energy

Use case 2: wireless access

- Possible schemes for energy reduction at BS:
 - Sleep mode operation
 - Coverage holes can be a problem
 - You need technology that can be switched off safely
 - Network sharing
 - Incentive is that you have no problem with coverage holes, leading to increased QoS
 - Optimal network deployment
 - Heterogeneous networks (macro / micro / femto)
 - Hardware optimizations
 - Lowering the power consumption at zero load
Methodology

Use case 2: wireless access

- Combine traffic of multiple MNOs on 1 network (if possible)

- Calculate energy consumption and cost

\[
C_n(f_i(t)) = \begin{cases}
 a_n \cdot U_n(f_i(t)) + b_n, & \text{BS is on} \\
 0, & \text{BS is off}
\end{cases}
\]
Game theoretic evaluation
Use case 2: wireless access

- Game theoretic simulation to evaluate competition between operators sharing their networks
- Is network sharing sustainable?
 - What are the dominant strategies?
 - What is the optimal strategy?

<table>
<thead>
<tr>
<th>MNO 2</th>
<th>Roam (payoff MNO 1, Payoff MNO 2)</th>
<th>Do not roam</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNO 1</td>
<td>Roaming price 1</td>
<td>Roaming price 2</td>
</tr>
</tbody>
</table>

Roaming price 1
Roaming price 2
Roaming price 3
Results
Use case 2: wireless access

- **Nash & Pareto optimal solutions**
 - **Nash**: High price is dominant strategy for MNO 1
 - **Pareto (social optimum)**: network sharing is desirable

<table>
<thead>
<tr>
<th>MNO 2</th>
<th>Roaming price L</th>
<th>Roaming price M</th>
<th>Roaming price H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roam</td>
<td>-11.95 ; -0.85</td>
<td>-4.34 ; -8.46</td>
<td>71.80 ; -84.59</td>
</tr>
<tr>
<td>Do not roam</td>
<td>-10.86 ; -10.86</td>
<td>-10.86 ; -10.86</td>
<td>-10.86 ; -10.86</td>
</tr>
</tbody>
</table>

- **Incentives to roam**
 - Divide cooperation benefits between operators
 - Regulation on roaming price could be beneficial
Conclusions

- Several energy efficiency solutions can also lead to lower costs for the operator
 - Home router virtualization in fibre-to-the-home
 - Reduced maintenance: main driver
 - Reduced energy “as a bonus”
 - BS sharing in wireless access
 - Some cooperation benefits possible for host and roaming MNO
 - Regulation can help to enforce roaming & reduce energy