GPON evolution: energy-efficient way for Next Generation Access

J. Montalvo
Telefónica I+D
Index

- Motivation: current access network and its challenges
- Evolution towards NG-PON energy efficiency
- Long-Reach/Large Splitting GPON
- Next Generation PON2
Current access network and its challenges

- TREND in downstream access rate is double capacity every 2 years
 - Current drivers: Mobile broadband, multimedia services, social networks, cloud services...
 - This leads to 40 Gb/s aggregate DS rate for PONs in ~2016
- BUT... Revenues vs BW growth link has been broken
 - Operators must address network evolution in a disruptive way, as the traditional network upgrades do not scale, neither in cost-efficiency nor in power consumption efficiency
- Architectural issues in network evolution is a decisive point for operators
- Fibre technology convergence between metro and access is taking place, overcoming limitations of copper access
- G/E PON standards are mature, NGPON1 is being closed and NGPON2 is expected for ~2014-16
Current PON

- Some experimental results (D1.2)
 - GPON OLT cards (4 PON interfaces) consumption are ~40W for 256 users in GPON (0.16W/customer), VDSL2 card consumption is 25W for 24 ports (around 1W/customer, 6 times more than in optical access) -> optical is the future, regulation?
 - Prototype with special functions (RF TV) can increase power consumption 50%
 - Video overlay functionalities have a great impact in overall power consumption due to its >10% ONT consumption increase. IPTV vs RF video? Strategical-economical issues
 - Video overlay head-ends power consumptions has been analyzed for 8 relevant providers and a power efficiency between 0.01 W/customer (55k customers) and 0.3 W/customer (10k user) has been found in the literature. Network dimensioning and the best provider choice can increase power efficiency 30 times (OPEX reduction)
 - 100Mpbs/user WDM-PON cards power consumption increase 30% for long reach (>20km) and 60% for 1G speed -> Evolution tradeoffs: impact on CO consolidation?
Towards energy efficient NG-PON

- Sleep Modes and EE Hardware design are important in the short-term.
- Long Reach is an important issue for increasing the energy efficiency of optical access in the medium term, (great impact in network architecture).

Source: GreenTouch Consortium Wireline Access working group
Towards energy efficient NG-PON

- Long reach has a big impact for POP consolidation and metro-network collapse -> enhanced power budget
- Enhanced power budget addresses two main challenges which can lead to both CAPEX and OPEX reduction (power consumption/maintenance)
 - Physical reach to users (long reach)
 - Efficient use of CO equipment (>cards filling ratio, large splitting)
- GPON standard
 - 28 dB power budget (B+)
 - For 1:64 PON topology, ~21dB are lost just in splitters
 - Other losses give a practical reach around 10km
- Enhanced power budget can increase power efficiency, current commercial approaches:
 - Extender Boxes
 - C+ Optics
Extender Boxes

- Products available in the market compliant with standard ITU-T G.984.6
- Reach extension up to 60km for 128 users (ideally)
- Two main technological approaches:
 - Semiconductor Optical Amplifiers: transparent to protocol
 - OEO regeneration: may require protocol adjustments due to optoelectrical conversion delay
- 1:1 type and 1:4 types, WDM trunk
C+ Optics

- The power budget of the PON can also be increased by using transceivers with improved optical specifications (C+ optics)

<table>
<thead>
<tr>
<th>Optics</th>
<th>TX power</th>
<th>RX sensitivity</th>
<th>Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>B+</td>
<td>1,5/4,5 dBm</td>
<td>-29 dBm</td>
<td>1,5 W</td>
</tr>
<tr>
<td>C+</td>
<td>3,0/7,0 dBm</td>
<td>-32 dBm</td>
<td>1,5 W</td>
</tr>
</tbody>
</table>

Source: Fujitsu

- Transmission power is increased in the OLT TX and the sensitivity of the OLT RX is also enhanced
- ONT/ONU do not require any modification or upgrade
- An average +3dB power budget enhancement can be achieved with regards B+ optics
Active Long Reach/Large Splitting GPON

- **Analysis of Power efficiency**

![Graph showing power consumption per user](image)

- EB solutions (1:1 type) with B+ do not improve energy efficiency
- EB solutions (1:4 type) improve energy efficiency, more with C+ optics
- C+ optics deployment keeping all COs as master is more energy efficient than C+ optics at master CO and EB at slaves COs
- C+ master CO and 1:4 EB achieves best filling ratio (less OLT cards)

Source: FT, OFC 2011
NG-PON2 is the answer to Passive Long Reach/Large Splitting

- Preliminary analysis
NG-PON2 is the answer to Passive Long Reach/Large Splitting

- Preliminary analysis

- GPON Energy efficiency per Mbps/user decreases as take rate is higher, due to TDMA
NG-PON2 is the answer to Passive Long Reach/Large Splitting

- Preliminary analysis

- Tunable ONT 1G WDM-PON is the most energy efficient system per Mbps/user (due to 1G), (1G Loopback WDM PON?)

TREND Plenary meeting
Ghent, 14-15 February 2012
NG-PON2 is the answer to Passive Long Reach/Large Splitting

- Preliminary analysis

- WDM-PON energy efficiency per Mbps/user increases with take rate as OLT card consumption is shared between connected homes
NG-PON2 is the answer to Passive Long Reach/Large Splitting

- Preliminary analysis

![Graph showing comparison between Loopback WDM-PON, GPON, and Tunable ONT WDM-PON](Image)

- Loopback 100M WDM-PON is more energy efficient than GPON for take rate > 0.56 (1G Loopback WDM PON?)

TREND Plenary meeting
Ghent, 14-15 February 2012
NG-PON2 is the answer to Passive Long Reach/Large Splitting

- Deployment scenarios with a comparative technology framework must be studied for overall energy efficiency
NG-PON2 is the answer to Passive Long Reach/Large Splitting

- Joint activity between Telefónica Research and France Telecom ongoing (more partners accepted)
 - Topic: Electro-optical power consumption comparative of NG-PON2 systems
 - Objective: Comparative evaluation of NGPON2 technologies energy efficiency at component (WP1) and deployment levels (WP2).
 - Deployment model and study of NG-PON2 can be the foundation of another Joint Activity in WP2.